As the specter of a global flu pandemic looms ever larger, both veteran flu scientists and newcomers to the field are making important progress against the disease. Robert G. Webster, now at St. Jude Children’s Research Hospital in Memphis, Tenn., first discovered during the 1960s that the novel flu viruses that seem to sweep through the human population every 30-odd years can arise from combinations of bird and human flu strains. He realized then that preventing new pandemics would require humans to control the avian half of the threat at its source. After a 1997 human outbreak in Hong Kong of an avian flu virus called H5N1, Webster turned his insight into action, guiding a reform of the territory’s live-animal markets to avert new opportunities for birds, animals and people to infect one another with flu viruses that might combine into a pandemic strain. The H5N1 virus has since raged throughout Asia’s bird populations and infected more than 100 people, yet Hong Kong has been largely spared. That stark contrast has in the past year prompted several Asian nations as well as global agriculture and public health authorities to begin seriously discussing regional agricultural reforms that would follow the Hong Kong model. Much of the intensified awareness of the avian flu threat to humans is also owed to the efforts of Klaus Stöhr, head of flu surveillance and response for the World Health Organization. Stöhr has been working tirelessly behind the scenes to break down barriers to better global preparedness for the crisis, including fostering international scientific collaborations, advising countries on how to bolster their detection of flu cases, and brokering negotiations between vaccine makers and national governments. Both vaccines and antiviral drugs will be in short supply during a pandemic, but expanded choices are in the pipeline. Robert B. Belshe of Saint Louis University and his colleagues demonstrated a dose-sparing approach to flu vaccination this year, showing that administering vaccine just under the skin, instead of into muscle, prompts a greater immune response with less vaccine. This insight could also lead to an array of new techniques for administering regular flu vaccine to groups, such as the elderly, who often have a weak response to the traditional flu shot. The Iomai Corporation in Gaithersburg, Md., is working on intradermal vaccination toward the goal of doing away with flu shots entirely and instead delivering the vaccine through a skin patch. Iomai has already shown that a patch containing an adjuvant—a substance that enhances immune system response—improves the effect of an intradermal vaccine when the patch is placed on or near the vaccination site. A patch that combines vaccine with an adjuvant boost would represent a radically new approach to flu immunization. Innovative thinking also distinguishes NexBio, Inc., in San Diego, which is gearing up for the first clinical trials of its antiflu drug, Fludase. Most flu antivirals work by disabling specific parts of the virus, so their effectiveness can vary considerably depending on the individual strain’s defenses. Fludase instead blocks the doorway in lung cells that flu viruses use to enter them. By targeting the door rather than the intruder, the company hopes to create a drug that is equally effective on all flu viruses and offers them no way to develop resistance. This work illustrates how science, technology and policy are being marshaled to combat future flu pandemics.
After a 1997 human outbreak in Hong Kong of an avian flu virus called H5N1, Webster turned his insight into action, guiding a reform of the territory’s live-animal markets to avert new opportunities for birds, animals and people to infect one another with flu viruses that might combine into a pandemic strain. The H5N1 virus has since raged throughout Asia’s bird populations and infected more than 100 people, yet Hong Kong has been largely spared. That stark contrast has in the past year prompted several Asian nations as well as global agriculture and public health authorities to begin seriously discussing regional agricultural reforms that would follow the Hong Kong model.
Much of the intensified awareness of the avian flu threat to humans is also owed to the efforts of Klaus Stöhr, head of flu surveillance and response for the World Health Organization. Stöhr has been working tirelessly behind the scenes to break down barriers to better global preparedness for the crisis, including fostering international scientific collaborations, advising countries on how to bolster their detection of flu cases, and brokering negotiations between vaccine makers and national governments.
Both vaccines and antiviral drugs will be in short supply during a pandemic, but expanded choices are in the pipeline. Robert B. Belshe of Saint Louis University and his colleagues demonstrated a dose-sparing approach to flu vaccination this year, showing that administering vaccine just under the skin, instead of into muscle, prompts a greater immune response with less vaccine. This insight could also lead to an array of new techniques for administering regular flu vaccine to groups, such as the elderly, who often have a weak response to the traditional flu shot.
The Iomai Corporation in Gaithersburg, Md., is working on intradermal vaccination toward the goal of doing away with flu shots entirely and instead delivering the vaccine through a skin patch. Iomai has already shown that a patch containing an adjuvant—a substance that enhances immune system response—improves the effect of an intradermal vaccine when the patch is placed on or near the vaccination site. A patch that combines vaccine with an adjuvant boost would represent a radically new approach to flu immunization.
Innovative thinking also distinguishes NexBio, Inc., in San Diego, which is gearing up for the first clinical trials of its antiflu drug, Fludase. Most flu antivirals work by disabling specific parts of the virus, so their effectiveness can vary considerably depending on the individual strain’s defenses. Fludase instead blocks the doorway in lung cells that flu viruses use to enter them. By targeting the door rather than the intruder, the company hopes to create a drug that is equally effective on all flu viruses and offers them no way to develop resistance. This work illustrates how science, technology and policy are being marshaled to combat future flu pandemics.